Category

Asphalt

Looking for Improved Asphalt Solutions? Go to BATT

By | Asphalt | No Comments

Asphalt Pavement SolutionIf you face a challenging future asphalt paving job, let Blankenship Asphalt Tech and Training (BATT) go to bat for you. Phil Blankenship, P.E., has created a company that offers a wide variety of services, including testing, training, engineering and product development.

As a strategic advisor to Surface Tech, Phil has applied his considerable depth of knowledge and 26 years of experience to a wide range of asphalt applications. Phil recently helped us design a revolutionary new asphalt mixture and provided field support for the placement of this innovative, crack-resistant, one-inch layer of asphalt. Applied on top of a general aviation airport runway that was plagued with microcracks, it allowed the airport to reopen in short order. (See our blog post for photos + project details.)

It’s the kind of forward-thinking service you can expect from Phil, and the BATT-men team, which includes Zack McKay who joined the company to lead the laboratory testing and training. Coming from the Asphalt Institute in the asphalt mixtures lab, Zack has nearly eight years of asphalt design and performance testing experience.

“I’m committed to our asphalt paving industry and the technology of asphalt pavements,” said Phil. “I work with contractors and suppliers on customized lab test training, product evaluations, new product trials, general project support, custom designs, such as balanced mix designs and performance testing designs.”

As a member of the Association of Asphalt Paving Technologists, TRB committees, PAIKY, and chair of ASTM 04.26, he stays abreast of the latest asphalt technologies and invites you to go to BATT with your next asphalt challenge. Learn more at https://www.blankenshipasphalttech.com/

Balanced Mix Design — a move forward for asphalt performance testing

By | Asphalt | No Comments

Asphalt MixAt Surface Tech, our commitment to technology and innovative paving solutions underpins everything we do, so we’re embracing the newer approach to developing better performing asphalt mixes.

It’s called “balanced mix design” or BMD for short. The concept originated in Texas where it’s currently used to evaluate resistance to rutting and cracking. Other highway agencies, including Louisiana and California, have adopted some aspects of BMD, while still other state agencies have started to explore it.

In short, BMD is simply testing the end result mixture by incorporating two or more mechanical tests, such as a rutting test and a cracking test, to gauge how well an asphalt mixture will resist common types of distress. There are two main approaches to designing asphalt mixtures in the US:

1. Volumetric Design with Performance Verification

This involves a Superpave volumetric (only) mix design where samples are made and optimized based on the volume of aggregate, asphalt binder and air. If the mixture doesn’t pass volumetric limits, the mix design process repeats.

2. Performance-Modified Volumetric Mix Design

This Superpave mix design method establishes an initial aggregate blend and asphalt content based on Superpave volumetric design as mentioned above with adjustments permitted to meet performance tests. These performance tests typically check for rutting and cracking and are part of the BMD process. Final design may not meet all traditional Superpave volumetric criteria, but the mixture is designed so that the more improved crack resistant mixture will not rut; thus the term “balanced”

The time is right for the adoption of BMD., Performance tests as part of the mix design procedure can help ensure the pavement meets its desired lifespan at a time when the US pavement infrastructure is in a decline.

Numerous performance tests have been developed over the past decades, including thermal cracking, reflection cracking,  flexural fatigue cracking, , rutting and moisture susceptibility tests. In order to include any of these mixture performance tests in the BMD procedure, the test result criteria must be based on the desired field performance.

It appears the move is on toward the widespread adoption of BMD, and Surface Tech applauds the advancement of any testing that holds the promise to improve asphalt mix properties. However, we also adhere to the philosophy that improvements in asphalt mix design need to be understood scientifically.

BMD applies a scientific approach to mix design by performing tests around rutting and cracking properties so that the mix is more balanced and not prone to immediate cracking (too brittle) or rutting (too soft). And as in all things in life, a balanced approach generally yields the best results.

To learn more about BMD, visit http://www.eng.auburn.edu/research/centers/ncat/newsroom/2017-spring/balanced-mix.html

Surface Tech + Adventus Material Strategies = A Winning Combination

By | Asphalt, Concrete | No Comments

Asphalt roadAdventus Material Strategies, LLC offers a combination of marketing and technical strategies to the infrastructure industry, drawing on decades of experience and respected industry network. Surface Tech and Adventus have recently formed a business alliance to further the material advancement goals of each company.

As a group, the Adventus team can draw from a deep well of competence for the commercialization of technology in the chemicals, polymers, and road infrastructure segments. The team recognizes the need for new methods and proven technologies to make concrete and asphalt applications stronger and last longer.

The team includes Brian Majeska, principal, with more than 25 years of experience in sales, marketing, technology and innovation in the road chemicals industry. And, Joseph Lorenc, also a principal, with 20 years of knowledge and experience gained in new technologies and expansion of businesses through effective marketing strategies.

“The Adventus team is dedicated to providing new and proven technologies to the asphalt and concrete industries. Their dedication to applying science and technology to achieve breakthrough innovations for our served industries makes them a perfect match for Surface Tech’s core value of providing workable, forward-thinking solutions for infrastructure applications,” said Santa Cruz.

For more information on Adventus Material Strategies, LLC, visit https://adventusmaterialdotcom.wordpress.com/the-team/

Product advancements and continued innovation take center stage at Surface Tech quarterly meeting

By | Asphalt, Concrete | No Comments

JUNO XP ACE XPAs the Surface Tech team gathered in La Jolla, CA on May 20 -21, presentations and discussions featured a strong emphasis on the development of new platform inclusions to each of the company’s divisions. Company stewards all participated in lengthy sessions devoted to the advancement of current and new product developments as we continue to seek innovative, but secure, solutions for the important industries we serve.

As a leader in innovation for the asphalt and concrete industries, the team first focused on the dry polymer category for asphalt and its aramid product, ACE XP.  Continued testing has proven the use of ACE XP will allow for reduced PG grade in mix designs, while still achieving a higher performance (including anti-cracking) for asphalt pavements.

The team examined how the QC disciplines of ACE XP differentiate it from the competition in both its manufacturing method and its ability to be accurately dosed at the plant.  The resulting plant cleanliness, combined with Surface Tech’s professional approach to interfacing with plant personnel (including safety),  go a long way toward ensuring the customer benefits from the accountable, automated dosing method in terms of producing a pavement that performs for the long haul.

In concrete, the JUNO XP line has been undergoing rigorous C1709 certification since last summer, and testing has proven the product exceeds all expectations in performance characteristics.  JUNO XP delivers cost savings, green benefits and an ease of adoption at all plant set ups.

The Alternative Supplementary Cementitious Materials (ASCM) category is a defined ACI discipline and JUNO XP is an early commercial product showing its true worth in that space.  Aggregate and fly ash quality and availability are strapping the industry, and new ACSM’s are needed more today than ever before.

In the future, look for even more innovative new products to be added to Surface Tech’s platform, including a fly ash replacement product and a colloidal silica product to enhance current market standards in those categories.  Our dedication to testing both in the lab and field continue to be clear evidence to our commitment to provide products that benefit the industry.

 

 

Will more dollars in the mix yield a stronger, longer-lasting surface?

By | Asphalt | No Comments

Get answers you can count on with the new Asphalt Annualized Lifecycle Calculator

 

Two important factors come into play in the design of any asphalt mix: Initial Cost and the Projected Years of Life. Engineers, contractors and pavers all wrestle with decisions on which mix will yield the longest pavement life for the best value in dollars spent. To aid in this endeavor, engineers use an equivalent annualized cost approach called Life Cycle Cost Analysis (LCCA), to aid in the decision.

Phil Blankenship, P.E., has combined his years of experience in the asphalt industry with a wide range of documented results from studies of asphalt pavement to create the Asphalt Annualized Lifecycle Calculator, an online tool that can help determine both lifespan and payoff time frames.

“Tools like this are important to use, because they can evaluate various mixes and lengths of time to see how they compare,” said Blankenship, an independent industry consultant who also serves on the Surface Tech Advisory Committee.

One critical feature of the new calculator is its ability to compute results in terms of today’s dollars (net present value), an important capability to evaluate the time value of the pavement investment . The calculator allows a user to compare  several mixtures and combine each with various additives to see how the estimated value of the mixture will compare in cost to a standard.. The current estimated life of US pavement surfaces averages about nine years before needing replacement. Additionally, the calculator takes into account the salvage value of the pavement to produce results that compare equally across various mix designs in terms of cost.

“The objective for this calculator was to achieve an apples-to-apples comparison,” said Blankenship.

With construction costs rising, it becomes ever more critical to seek out new ways to predict return on investment (ROI). This new calculator shows you what can happen when you test various mixes against their projected lifespans. In short, it’s a try-before-you-buy tool that can save you both money and buy you time.

Click here to test drive the new Asphalt Annualized Lifecycle Calculator.

Taylor County Airport

ACE XP Polymer Fiber helps a new pavement design achieve a higher standard in crack prevention

By | ACE XP, Asphalt, Case Studies | No Comments
Taylor County Airport

Taylor County Airport in Kentucky (Photo by Palmer Engineering)

A custom asphalt mix design utilizing ACE XP polymer fibers has given a general aviation airport the long-term solution it sought for a nagging pavement cracking problem. Initial results show the custom design, which combined both a binder layer and a surface layer reinforced with ACE XP, will exceed expectations by greatly reducing cracking potential.

The six-year-old runway pavement at Taylor County Airport in Kentucky was failing. Airport authorities called on Palmer Engineering to provide a desperately needed 15-year-plus solution to the pavement’s micro-cracking problem. Working with Haydon Materials, the team turned to an expert with long-standing experience in designing crack-resistant asphalt pavements.

custom asphalt mix design utilizing ACE XP polymer fibers“Haydon Materials brought in Phil Blankenship from Blankenship Asphalt Tech & Training,” said Joe Dennis, Surface Tech’s chief technology officer for asphalt.

“The airport authorities were concerned that numerous cracks in the existing pavement could lead to failure, a common failure in airport pavements as aging occurs can create FOD — Flying Object Debris — causing a danger to the aircraft and potentially the traveling public.”

No milling was done on the runway pavement prior to re-paving. This meant the existing cracks would be exposed to the bottom of the  binder layer and would ultimately  reflect upward through the new pavement. The solution called for an inordinately crack resistant and resilient binder layer that either needed to be custom-designed, or an expensive two-dimensional geosynthetic rolled interlayer product.

“As a member of Surface-Tech’s Technical Advisory Committee, Phil is well versed on the capabilities of ACE XP, and he set about designing a completely new binder layer asphalt mix using it.”

Blankenship was able to deliver a design that Haydon could produce in its plant and pave with existing paving equipment. Using ACE XP in the new binder layer design gave Haydon Materials an effective crack resistant solution, while maintaining cost control for this demanding application.

The customized ACE XP mix achieved a new level of flexibility for the binder layer. The new binder layer design — a finely graded, highly asphalted crack resistant mixture — greatly reduced the potential for cracks to reflect upward from the base through the new pavement.

An  ACE XP reinforced surface mix was also designed utilizing a higher-than-normal asphalt content to provide even greater crack resistance than a typical FAA asphalt mix design,

“The development of this unique combination of mix designs for the binder and surface layer is an exciting advancement for the paving industry that holds great promise for dramatically improving crack prevention,” said Dennis.

“With this new approach, contractors can also control the quality in both production and installation, as the new mix design is simply incorporated into the contractor’s production processes, thus eliminating third party contractors to install the 2-dimentional geosynthetic rolled interlayer product.”

For more information on ACE XP  crack resistant designs, contact us.

custom asphalt mix design utilizing ACE XP polymer fibers

New and improved MD3+

By | Asphalt | No Comments

More accurate than ever  — just in time for the asphalt season

MD3+ dosing system for asphaltLast July, Surface Tech introduced the MD3+, the latest version of its Micro Doser system that can handle both 19mm or 38mm sizes of ACE XP polymer fibers. This year, the MD3+ comes with added improvements to the computer interface, which tracks the total weight used and average dosage rate right on the home screen to ensure the accurate dosing of 4.2 ounces of ACE XP into each ton of produced asphalt.

“We are proud to announce that we’ve succeeded in making some programming enhancements that improve the dosing accuracy even more —MD3+ can now dose to within 2 percent of the dosage rate. This is well under Surface Tech’s suggested 5 percent in our product and dosage specifications,” said Joe Dennis, vice president & chief technical officer.

Additionally, Surface Tech has ramped up the availability of the MD3+. The company will be stocking a fleet of more than 20  MD3+ systems strategically around the country and making them available just in time for the spring asphalt season.

To find out how to add the MD3+ and Surface Tech’s revolutionary ACE XP polymer fibers to your next asphalt project, Contact Surface Tech today. We make asphalt stronger than steel, with a life cycle that can go the distance.

Technical review of Indirect Tensile Strength testing advises caution in relying on results

By | Asphalt | No Comments

ACE XP Polymer Fiber
Alternative tests, plus a balanced mix design, can improve predictions of asphalt performance

The indirect tensile strength (ITS) test has been utilized for more than 40 years as a definitive method for predicting the performance of asphalt mixtures. But the test, at 25°C, can render misleading results, according to a recently released technical brief by Phil Blankenship, P.E.

indirect tensile strength (ITS) test“While the indirect tensile strength test at 25°C is sensitive to changes in mixture properties such as air voids, asphalt binder content, binder grade, aggregate properties (angularity, texture, etc.), the resulting indirect tensile strength does not always equate to positive field results,” he writes. “In other words, high tensile strength alone does not always relate to improved cracking resistance.”

The author discusses various developments taken over the past 10 to 15 years in ITS testing to achieve more predictive results for top down cracking. However, differences in testing temperatures and loading rates may not, in reality, conform to ASTM D 6931 standards.

Blankenship presents data from various experiments that show a weak correlation between strength (at 25° C) and ALF cycles to failure. Various results of other tests also show that indirect tensile strength testing alone (at 25°C) can be misleading.

Instead, Blankenship advises that other cracking tests produce good correlations to field performance, and the types of tests and standards are provided within the paper. The author further explores taking a “balanced mix design” approach, or performance-based testing.

To explore the various testing methods for yourself, click here.

ACE XP Polymer Fiber adds strength to asphalt pavement in all directions. PROVEN IN THE FIELD. DOWNLOAD THE TEST RESULTS.